
Novel Metaheuristic Algorithms Applied to Optimization of Structures 
 

LETÍCIA FLECK FADEL MIGUEL1 and LEANDRO FLECK FADEL MIGUEL2 
1Department of Mechanical Engineering and 2Department of Civil Engineering 

1Federal University of Rio Grande do Sul and 2Federal University of Santa Catarina 
1Av. Sarmento Leite 425, 2º andar, CEP 90050-170, Porto Alegre, RS, Brazil. 

BRAZIL 
letffm@ufrgs.br    http://www.ufrgs.br 

 
 
Abstract: - This paper aims at to evaluate the performance in engineering problems of two of the most recent 
metaheuristic algorithms developed in the last decade. The selected metaheuristic methods are Harmony Search 
(HS) and Firefly Algorithm (FA). Initially a brief description of both methods is presented and next they are 
applied in the field of classical structural optimization problems of truss structures. The effectiveness of 
Harmony Search and Firefly Algorithm is demonstrated through four benchmark structural optimization 
problems. The results show the ability of both metaheuristic algorithms to find optimal solutions for structural 
optimization problems in a relatively low computational cost. 
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1 Introduction 
Haftka and Gürdal [1] affirm that optimization is 
concerned with achieving the best outcome of a 
given operation while satisfying certain restrictions. 
So, optimization is present in many human 
activities, since the simple task of planning holidays 
up to complex engineering designs. Thus, researches 
of different parts of the world have been studding 
and developing optimization methods. 

In Engineering, most design optimization 
problems are often nonlinear, involving different 
design variables under complex constraints. This 
nonlinearity may result in multimodal response 
landscape. Consequently, local search algorithms 
are not suitable, only global algorithms should be 
used to obtain optimal solutions (Arora, [2]; Deb, 
[3]; Yang, [4]). Nowadays, numerical simulations 
become an indispensable tool for solving such 
optimization problems with various efficient search 
algorithms. Modern metaheuristic algorithms have 
been developed with an aim to carry out global 
search. 

Optimization of truss structures has been an 
active area of research in the field of search and 
optimal design. In the sizing optimization of trusses, 
cross sectional areas of members are considered as 
design variables and the coordinates of the nodes 
and connectivity among various members are 
considered to be fixed. The resulting optimization 
problem is a nonlinear programming problem. 

Various methods have been developed to find 
optimal truss structures. Metaheuristic algorithms 
have been broadly used in these optimization 
problems, especially because they are not a 
gradient-based search, so they avoid most of the 
pitfalls of any gradient-based search algorithms. 
Thus, these algorithms have fewer mathematical 
requirements and they can be used to deal with 
complex objective functions. Many researches 
affirm that the metaheuristic algorithms are very 
efficient in the optimization area, and they attribute 
this efficiency to the fact that they imitate the best 
features in nature, especially the selection of the 
fittest in biological systems which have evolved by 
natural selection over millions of years. 

Within this context, the present paper presents an 
analysis of two of the last proposed metaheuristic 
algorithms applied to optimization of truss 
structures. The two metaheuristic algorithms 
(Harmony Search and Firefly Algorithm) are 
applied to optimization of a number of truss 
structure design problems and the optimized trusses 
are compared with that reported in the literature. 
 

 

2 Metaheuristic Algorithms 
Many classical or conventional algorithms for 
structural optimization are deterministics and most 
of them used the gradient information, i.e., they use 
the function values and their derivatives. They 
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normally work extremely well for smooth unimodal 
problems; however, if there is some discontinuity in 
the objective function, they may not converge. Thus, 
in this kind of problem, a non-gradient algorithm is 
preferred. Non-gradient based or gradient-free 
algorithms do not use any derivative, but only the 
function values. 

The stochastic or metaheuristic algorithms are a 
good alternative to deal with discontinuous 
objective function, since they are based on 
randomization and local search. Randomization 
provides a good way to move away from local 
search to the search on the global scale. Therefore, 
almost all metaheuristic algorithms intend to be 
suitable for global optimization. 

According to Yang [4], two major components of 
any metaheuristic algorithms are: intensification and 
diversification, or exploitation and exploration. 
Diversification means to generate diverse solutions 
so as to explore the search space on the global scale, 
while intensification means to focus on the search in 
a local region by exploiting the information that a 
current good solution is found in this region. This is 
in combination with the selection of the best 
solutions. The selection of the best ensures that the 
solutions will converge to the optimality, while the 
diversification via randomization avoids the 
solutions being trapped at local optima and, at the 
same time, increases the diversity of the solutions. 
The good combination of these two major 
components will usually ensure that the global 
optimality is achievable. 

Many different metaheuristic algorithms are in 
existence and new variants are continually being 
proposed. Yang [4] presents a very interesting 
history of metaheuristic algorithms, since the 
Second World War. In the last decade many 
metaheuristic algorithms were developed, for 
example, Harmony Search (Geem et al., [5]), Honey 
Bee (Nakrani and Tovey, [6]), Bee Algorithm 
(Pham et al., [7]), Artificial Bee Colony (Karaboga, 
[8]), Firefly Algorithm (Yang, [9]), Cuckoo Search 
(Yang and Deb, [10]), among others. 

In this paper it will be studied two of these novel 
metaheuristic methods: Harmony Search (HS) and 
Firefly Algorithm (FA). Since HS and FA are 
metaheuristic algorithms, they are not a gradient-
based search, so they avoid most of the pitfalls of 
any gradient-based search algorithms. Thus, these 
algorithms have fewer mathematical requirements 
and they can be used to deal with complex objective 
functions. 

In the following, a brief review of the two 
optimization algorithms used in this paper will be 
presented. 
 
 
2.1 Harmony Search (HS) 
Harmony search (HS) is a recent metaheuristic 
optimization algorithm, which was developed by 
Geem et al. [5]. HS is a music-based metaheuristic 
optimization algorithm, which is inspired by the 
observation that the aim of music is to search for a 
perfect state of harmony. This harmony in music is 
analogous to find the optimality in an optimization 
process. The search process in optimization can be 
compared to a musician’s improvisation process. 

Geem et al. [5] observed that when musicians are 
improvising they used to (a) play famous piece of 
music (a series of pitches in harmony) from their 
memory; or (b) play something similar to a known 
piece (thus adjusting the pitch slightly); or (c) 
compose new or random notes. Thus, in Harmony 
Search Algorithm, these three options become (a) 
use of harmony memory; (b) pitch adjusting; and (c) 
randomization. 

The use of harmony memory will ensure that the 
best harmonies will be carried over to the new 
harmony memory. It is reached through the use of a 
parameter called Harmony Memory Considering 
Rate (HMCR), 0 ≤ HMCR ≤ 1. So, if this parameter 
is too low, only few best harmonies are selected and 
it may converge too slowly. On the other hand, if 
this parameter is extremely high (near 1), almost all 
the harmonies are used in the harmony memory, 
then other harmonies are not explored well, leading 
to potentially wrong solutions. Therefore, this 
parameter usually assumes values from 0.7 to 0.95 
(Yang [9]). 

The second component is the pitch adjustment 
determined by a pitch bandwidth range (bw) and a 
pitch adjusting rate (PAR). In HS pitch adjustment 
corresponds to generate a slightly different solution. 
The PAR is used to control the degree of the 
adjustment. Thus, a low PAR with a narrow 
bandwidth can slow down the convergence of HS 
because the limitation in the exploration of only a 
small subspace of the whole search space. On the 
other hand, a very high PAR with a wide bandwidth 
may cause the solution to scatter around some 
potential optima as in a random search. So, this 
parameter usually assumes values from 0.1 to 0.5 in 
most simulations (Yang, [9]). 

The third component is the randomization, which 
is to increase the diversity of the solutions. 
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Although adjusting pitch has a similar role, but it is 
limited to certain local pitch adjustment and thus 
corresponds to a local search. The use of 
randomization can drive the system further to 
explore various diverse solutions so as to find the 
global optimality (Yang, [9]). The three components 
in HS can be summarized as the pseudo code shown 
in Figure 1 (Yang, [9]). 
 
______________________________________________ 
begin 

Objective function f(x), x = (x1, ..., xp)
T 

Generate initial harmonics (real number arrays) 

Define pitch adjusting rate and pitch limits 

Define harmony memory accepting rate 

while (t < Max number of iterations) 
Generate new harmonics by accepting bets harmonics 

Adjust pitch to get new harmonics (solutions) 

if (rand > HMCR), choose an existing harmonic randomly 
else if (rand > PAR), adjust the pitch randomly within limits 
else generate new harmonics via randomization 
end if 

Accept the new harmonics (solutions) if better 

end while 

Find the current best estimates 

end 

______________________________________________ 
Figure 1: Pseudo code of Harmony Search (adapted 
from Yang, [9]). 
 

Finally, according to Yang [9], HS could be 
more efficient than Genetic Algorithms (GA), for 
instance, because HS does not use binary encoding 
and decoding, but it does have multiple solution 
vectors. Therefore, HS is faster during each 
iteration. Besides, the implementation of HS 
algorithm is also easier. In addition, there is 
evidence to suggest that HS is less sensitive to the 
chosen parameters, which means that it is not 
necessary to fine-tune these parameters to get 
quality solutions. 

Recently, Degertekin [11] and Degertekin et al. 
[12] realized a comparative study of HS with other 
optimization methods for optimum design of steel 
frame structures and concluded that the HS 
algorithm yielded lighter designs for the examples 
presented and in many cases it also required less 
computational effort for the presented examples. 

Geem et al. [5] and Geem [13] present a detailed 
explanation about HS. 
 
 
2.2 Firefly Algorithm (FA) 
Firefly Algorithm (FA) is a very new metaheuristic 
optimization algorithm, which was developed by 
Yang [9] and it is inspired by the flashing behavior 
of fireflies. 

According to Yang [4], there are three idealized 
rules in the FA optimization: (a) all fireflies are 
unisex so that one firefly will be attracted to other 
fireflies regardless of their sex; (b) attractiveness is 
proportional to the their brightness, thus for any two 
flashing fireflies, the less brighter one will move 
towards the brighter one. The attractiveness is 
proportional to the brightness and they both 
decrease as their distance increases. If there is no 
brighter one than a particular firefly, it will move 
randomly; and (c) the brightness of a firefly is 
affected or determined by the landscape of the 
objective function. In other words, Yang [4] affirms 
that a firefly will be attracted to brighter or more 
attractive fireflies, and at the same time they will 
move randomly. This attractiveness is proportional 
to the brightness of the flashing light which will 
decrease with distance, therefore, the attractiveness 
will be evaluated in the eye of the beholders (other 
fireflies) and the decrease of light intensity is 
controlled by the light absorption coefficient γ 
which is in turn linked to a characteristic scale. 
Based on these three rules, the basic steps of the FA 
can be summarized as the pseudo code shown in 
Figure 2 (Yang, [4]). 
 
______________________________________________ 
begin 

Objective function f(x), x = (x1, ..., xd)
T 

Generate initial population of fireflies xi (i = 1, 2, ..., n) 

Light intensity Ii at xi is determined by f(xi) 

Define light absorption coefficient γ 
while (t < MaxGeneration) 

for i = 1 : n all n fireflies 
for j = 1 : d loop over all d dimensions 

if (Ii < Ij), Move firefly i towards j; end if 

Vary attractiveness with distance r via exp[−γ r] 

Evaluate new solutions and update light intensity 

end for j 
end for i 
Rank the fireflies and find the current global best 

end while 

Post-process results and visualization 

end 

______________________________________________ 
Figure 2: Pseudo code of Firefly Algorithm (adapted 
from Yang, [4]). 
 

FA is a population-based algorithm, which may 
share many similarities with Particle Swarm 
Optimization (PSO). In fact, it has been proved by 
Yang [9] that when γ→∞, the FA will become an 
accelerated version of PSO, while γ→0, the FA 
reduces to a version of random search algorithms. 

In the FA optimization, the diversification is 
represented by the random movement component, 
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while the intensification is implicitly controlled by 
the attraction of different fireflies and the 
attractiveness strength β. Unlike other 
metaheuristics, the interaction between exploration 
and exploitation is intermingled in some way; this 
might be an important factor for its success in 
solving multiobjective and multimodal optimization 
problems (Yang, [14]). 

Finally, according to Yang ([4], [9]), FA has the 
advantage that it can find the global optima as well 
as the local optima simultaneously and effectively. 
A further advantage of FA is that different fireflies 
will work almost independently, it is thus particular 
suitable for parallel implementation. It is even better 
than GA and PSO because fireflies aggregate more 
closely around each optimum. It can be expected 
that the interactions between different sub-regions 
are minimal in parallel implementation. Yang ([4], 
[9]) describes in detail the FA. 
 
 

3 Benchmark Examples 
Standard test problems are useful for the purpose of 
checking optimization algorithms. The four 
benchmark examples given in this section have been 
widely used for this purpose. 

HS and FA were implemented in Matlab code, as 
well as, the subroutines of truss analysis developed 
by the authors. 

HS and FA change the cross sectional areas (Ai), 
which are the design variables, looking for the 
minimum structural mass (Mmin), subject to stresses 
(σi) and displacements (δj) constraints. Thus, the 
mathematical relationships that led to the numerical 
results are: 
 

Minimize ∑=
=

n

i
iii AM

1
min lρ                       (1) 

  

0max ≤− ii σσ , i = 1, …, n 

0max ≤− jj δδ , j = 1, …, q Subjected to 

maxmin
iii AAA ≤≤ , i = 1, …, n 

 
in which Mmin is the minimum structural mass, n is 
the number of members in the current design, q is 
the number of nodes in the current design, ρi is the 
specific mass of the material of each bar, ℓi is the 

length of each bar, iσ  and max
iσ  are the stress and 

maximum allowed stress of the ith bar, respectively, 

jδ  and max
jδ  are the displacement and maximum 

allowed displacement at node j, respectively, and 

finally min
iA  and max

iA  are respectively the lower 
and upper bounds of the cross sectional area of the 
i
th bar. 

 
 
3.1 10 Bar Plane Truss 
The first example considered is the ten bar plane 
truss shown in Figure 3. The design variables are the 
cross sectional areas (treated as continuous design 
variables) of the ten elements. 

The material properties, loading, allowable and 
optimum design are shown in Tables 1 to 4, 
respectively. 
 

 
 

Figure 3: Ten bar truss. 
 
 

Table 1: Material properties for the 10 bar truss. 
Property Value 

Material Aluminum 
Young’s modulus 107psi = 68.95GPa 
Specific mass 0.1lb/in3 = 2767.99kg/m3 

 
 
Table 2: Nodal load components for the 10 bar truss. 

Node x y 

2 0 -100kip = -444.82kN 
4 0 -100kip = -444.82kN 

 
 

Table 3: Allowable for the 10 bar truss. 
Allowable Value 

Stress 

±75ksi = ±517.11MPa for 
member 9 and ±25ksi = 
±172.37MPa for all other 
members 

Displacement ±2in = ±50.8mm in y 
direction for nodes 1 to 4 

Range of the 
design variables 64.5mm2 ≤ Ai ≤ 20000mm2 
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Table 4: Optimum design for the 10 bar truss. 
 (Areas in

2
)  Areas mm

2
 

Member 
Haftka and Gürdal 

[1] 
Ghasemi et al. 

[15] 
Present Paper - 

Harmony Search 
Present Paper -  

Firefly Algorithm 
1 (30.52) 19690.28 (25.73) 16599.97 19547.00 19869.00 
2 (0.10) 64.52 (0.109) 70.32 505.93 497.82 
3 (23.20) 14967.71 (24.85) 16032.23 15633.00 15258.00 
4 (15.22) 9819.34 (16.35) 10548.37 10173.00 9938.30 
5 (0.10) 64.52 (0.106) 68.39 65.88 64.50 
6 (0.55) 354.84 (0.109) 70.32 384.34 495.34 
7 (7.46) 4812.89 (8.70) 5612.89 5199.60 5406.70 
8 (21.04) 13574.17 (21.41) 13812.88 13772.00 14030.00 
9 (21.53) 13890.29 (22.30) 14387.07 13790.00 13585.00 
10 (0.10) 64.52 (0.122) 78.71 665.69 685.91 

Mass (lb) 

kg 

(5060.85) 
2295.56 

(5095.65) 
2311.35 

2368.62 2373.94 

 
 

As it can be observed in Table 4, the results 
obtained in the present paper, as much using HS as 
FA, are close to the values found in literature. The 
maximum difference was around only 3%, 
considering as reference the smallest value found in 
literature (2295.56kg). 

It is important to point out that the results 
obtained by Ghasemi et al. [15] and presented in 
Table 4, slightly violated the displacement 
constraints in nodes 1 and 2. 

In all simulations presented in this paper, as 
much using HS as FA, each optimum solution was 
obtained after 20,000 searches. 

Other researchers also studied this structure and 
they arrived to the following optimum values: 
Venkayya [16] - 2306.5kg (5084.9lb), Gellatly and 
Berke [17] - 2318.8kg (5112.0lb), Schmit and Farshi 
[18] - 2308.3kg (5089.0lb), Schmit and Miura [19] - 
2302.82kg (5076.85lb), Dobbs and Nelson [20] - 
2304.2kg (5080.0lb), Li et al. [21] - 2295.59kg 
(5060.92lb), Kaveh and Talatahari [22] - 2293.62kg 
(5056.56lb), and Farshi and Alinia-Ziazi [23] - 
2295.8kg (5061.4lb), among others. Recently, 
Togan et al. [24] obtained the minimum weight of 
this truss under uncertainties on the load, material 
and cross section areas with HS using reliability 
index and performance measure approaches, 
obtaining a minimum mass of 2700kg. 
 
 
3.2 17 Bar Plane Truss 
The second standard test problem is the seventeen 
bar plane truss shown in Figure 4. Again, the design 
variables are the cross sectional areas of the 
seventeen elements. The material properties, 

loading, allowable and optimum design are shown 
in Tables 5 to 8, respectively. 
 

 
Figure 4: Seventeen bar truss. 

 
 

Table 5: Material properties for the 17 bar truss. 
Property Value 

Material Steel 
Young’s modulus 3×107psi = 206.84GPa 
Specific mass 0.268lb/in3 = 7418.21kg/m3 

 
 
Table 6: Nodal load components for the 17 bar truss. 

Node x y 

9 0 -100kip = -444.82kN 
 
 

Table 7: Allowable for the 17 bar truss. 
Allowable Value 

Stress ±50ksi = ±344.74MPa 

Displacement ±2in = ±50.8mm in x and y 
direction for all nodes 

Range of the 
design variables 64.5mm2 ≤ Ai ≤ 12900mm2 
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Table 8: Optimum design for the 17 bar truss. 
 (Areas in

2
)  Areas mm

2
 

Members 
Khot and Berke 

[25] 
Adeli and Kumar 

[26] 
Present Paper - 

Harmony Search 
Present Paper -  

Firefly Algorithm 
1 (15.93) 10277 (16.03) 10341 10444.00 10196.00 
2 (0.10) 65 (0.11) 69 78.46 64.50 
3 (12.06) 7780 (12.18) 7860 7890.60 7644.70 
4 (0.10) 65 (0.11) 71 71.12 64.77 
5 (8.06) 5199 (8.42) 5430 5157.80 5322.50 
6 (5.56) 3587 (5.71) 3687 3399.50 3522.00 
7 (11.93) 7697 (11.33) 7310 7588.80 7650.70 
8 (0.10) 65 (0.11) 68 67.57 64.50 
9 (7.94) 5125 (7.30) 4710 4983.80 5110.20 
10 (0.10) 65 (0.11) 74 99.49 64.50 
11 (4.05) 2616 (4.05) 2610 2775.20 2584.20 
12 (0.10) 65 (0.10) 65 66.15 64.50 
13 (5.65) 3645 (5.61) 3620 3694.60 3725.80 
14 (4.00) 2580 (4.05) 2610 2495.40 2692.10 
15 (5.56) 3585 (5.15) 3324 3591.90 3643.30 
16 (0.10) 65 (0.11) 69 140.81 64.50 
17 (5.58) 3599 (5.29) 3410 3650.30 3608.10 

Mass (lb) 

kg 

(2581.89) 
1171.13 

(2594.42) 
1176.81 

1173.22 1171.47 

 
 
 

As it can be observed in Table 8, the results 
obtained in the present paper are very close to the 
values found in literature. The maximum difference 
was less than 0.18%, considering as reference the 
smallest value found in literature (1171.13kg). 
Again, in all simulations, each optimum solution 
was obtained after 20,000 searches. 
 
 
3.3 25 Bar Space Truss 
The third benchmark problem is the twenty five 
space truss shown in Figure 5. The truss is subjected 
to two distinct loading conditions and has eight 
independent design variables after linking, as 
indicated in Table 9. The material properties, 
loadings and allowable are shown in Tables 10 to 
12, respectively, while Table 13 shows the optimum 
design. 

 
Figure 5: Twenty five bar truss. 
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Table 9: Member linking detail for the 25 bar truss. 
Group Number Members 

1 1 
2 2-5 
3 6-9 
4 10-11 
5 12-13 
6 14-17 
7 18-21 
8 22-25 

 
Table 10: Material properties for the 25 bar truss. 

Property Value 

Material Aluminum 
Young’s modulus 107psi = 68.95GPa 
Specific mass 0.1lb/in3 = 2767.99kg/m3 

 
Table 11: Nodal load components for 25 bar truss. 
Case Node x y z 

1 
1kip = 

4.4482kN 
10kip = 

44.482kN 
-5kip =  

-22.241kN 

2 0 
10kip = 

44.482kN 
-5kip =  

-22.241kN 

3 
0.5kip = 

2.2241kN 
0 0 

1 

6 
0.5kip = 

2.2241kN 
0 0 

2 1 0 
20kip = 

88.964kN 
-5kip =  

-22.241kN 

2 0 
-20kip =  

-88.964kN 
-5kip =  

-22.241kN 
 

Table 12: Allowable for the 25 bar truss. 
Allowable Value 

Tension stress for all 
members 

40ksi = 275.79MPa 

Compression stress 
for member 1 

-35.092ksi = -241.95MPa 

Compression stress 
for members 2-5 

-11.590ksi = -79.91MPa 

Compression stress 
for members 6-9 

-17.305ksi = -119.31MPa 

Compression stress 
for members 10-11 

-35.092ksi = -241.95MPa 

Compression stress 
for members 12-13 

-35.092ksi = -241.95MPa 

Compression stress 
for members 14-17 

-6.759ksi = -46.60MPa 

Compression stress 
for members 18-21 

-6.959ksi = -47.98MPa 

Compression stress 
for members 22-25 

-11.082ksi = -76.41MPa 

Displacement 
±0.35in = ±8.89mm in x, 
y and z directions for 
nodes 1 and 2 

Range of the design 
variables 6.45mm2 ≤ Ai ≤ 2000mm2 

 
 
 

Table 13: Optimum design for the 25 bar truss. 
 (Areas in

2
)  Areas mm

2
 

Members 
Saka 
[27] 

Farshi and Alinia-
Ziazi [23] 

Present Paper - 
Harmony Search 

Present Paper -  
Firefly Algorithm 

1 (0.010) 6.45 (0.010) 6.45 10.66 7.07 
2-5 (2.058) 1327.74 (1.998) 1289.09 1233.10 1283.70 
6-9 (2.988) 1927.74 (2.983) 1924.38 1926.90 1930.80 

10-11 (0.010) 6.45 (0.010) 6.45 6.59 6.45 
12-13 (0.010) 6.45 (0.010) 6.45 21.65 6.45 
14-17 (0.696) 449.03 (0.684) 441.10 458.44 431.54 
18-21 (1.670) 1077.42 (1.675) 1080.64 1132.30 1081.40 
22-25 (2.592) 1672.25 (2.667) 1720.51 1687.10 1730.70 

Mass (lb) 

kg 

(545.23) 
247.31 

(545.37) 
247.38 

247.84 247.31 

 
 

As it can be observed in Table 13, the results 
obtained in the present paper, as much using HS as 
FA, are practically identical to the values found in 
literature. 

It is important to point out that the results 
obtained by Saka [27] and presented in Table 13, 
slightly violated the displacement constraints in 
nodes 1 and 2, for loading case 1 and they also 
slightly violated the compression stress constraints 
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in bars 19 and 20 for loading case 2. In all 
simulations each optimum solution was obtained 
after 20,000 searches. 

Other researchers also studied this structure and 
they arrived to the following optimum values: 
Venkayya [16] - 247.43kg (545.49lb), Templeman 
and Winterbottom [28] - 247.35kg (545.32lb), 
Schmit and Farshi [18] - 247.31kg (545.22lb), 
Schmit and Miura [19] - 247.28kg (545.17lb), and 
Adeli and Kamal [29] - 247.51kg (545.66lb), among 
others. 
 
 
3.4 72 Bar Space Truss 
The last benchmark example is the seventy two bar 
space truss shown in Figure 6. The truss is subjected 
to two distinct loading conditions and has sixteen 
independent design variables after linking, as 
indicated in Table 14. The material properties, 
loadings and allowable are shown in Tables 15 to 
17, respectively, while Table 18 shows the optimum 
design. 
 

 
Figure 6: Seventy two bar truss. 

 
 

Table 14: Member linking detail for the 72 bar truss. 
Group Number Members 

1 1-4 
2 5-12 
3 13-16 
4 17-18 
5 19-22 
6 23-30 
7 31-34 
8 35-36 
9 37-40 
10 41-48 
11 49-52 
12 53-54 
13 55-58 
14 59-66 
15 67-70 
16 71-72 

 
Table 15: Material properties for the 72 bar truss. 

Property Value 

Material Aluminum 
Young’s modulus 107psi = 68.95GPa 
Specific mass 0.1lb/in3 = 2767.99kg/m3 

 
Table 16: Nodal load components for 72 bar truss. 
Case Node x y z 

1 1 
5kip = 

22.24kN 
5kip = 

22.24kN 
-5kip =  

-22.24kN 

1 0 0 
-5kip =  

-22.24kN 

2 0 0 
-5kip =  

-22.24kN 

3 0 0 
-5kip =  

-22.24kN 

2 

4 0 0 
-5kip =  

-22.24kN 
 

Table 17: Allowable for the 72 bar truss. 
Allowable Value 

Stress ±25ksi = ±172.37MPa 

Displacement 
±0.25in = ±6.35mm in x, y 
and z directions for nodes 1 
to 4 

Range of the 
design variables 64.5mm2 ≤ Ai ≤ 1610mm2 
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Table 18: Optimum design for the 72 bar truss. 
 (Areas in

2
)  Areas mm

2
 

Members 
Haftka and Gürdal 

[1] 
Erbatur et al. 

[30] 
Present Paper - 

Harmony Search 
Present Paper -  

Firefly Algorithm 
1-4 (0.157) 101.35 (0.161) 103.87 103.84 101.02 
5-12 (0.536) 345.55 (0.544) 350.97 334.02 342.74 
13-16 (0.410) 264.45 (0.379) 244.52 266.19 265.24 
17-18 (0.569) 367.10 (0.521) 336.13 395.29 323.46 
19-22 (0.507) 326.90 (0.535) 345.16 327.35 415.19 
23-30 (0.520) 335.48 (0.535) 345.16 319.72 328.15 
31-34 (0.100) 64.52 (0.103) 66.45 65.30 64.52 
35-36 (0.100) 64.52 (0.111) 71.61 72.76 121.75 
37-40 (1.280) 825.80 (1.310) 845.16 774.66 826.82 
41-48 (0.515) 332.13 (0.498) 321.29 316.02 323.15 
49-52 (0.100) 64.52 (0.111) 70.97 64.77 64.59 
53-54 (0.100) 64.52 (0.103) 66.45 65.15 65.93 
55-58 (1.897) 1223.87 (1.910) 1232.26 1250.20 1294.50 
59-66 (0.516) 332.77 (0.525) 338.71 385.77 328.46 
67-70 (0.100) 64.52 (0.122) 78.71 64.63 64.50 
71-72 (0.100) 64.52 (0.103) 66.45 64.89 64.50 

Mass (lb) 

kg 

(379.66) 
172.21 

(383.12) 
173.78 

173.56 173.52 

 
 

As it can be observed in Table 18, the results 
obtained in the present paper, as much using HS as 
FA, are practically identical to the values found in 
literature. Other researchers also studied this 
structure and they arrived to the following optimum 
values: Venkayya [16] - 172.91kg (381.2lb), 
Gellatly and Berke [17] - 179.61kg (395.97lb), 
Schmit and Farshi [18] - 176.28kg (388.63lb), 
Schmit and Miura [19] - 172.20kg (379.64lb), Chao 
et al. [31] - 172.19kg (379.62lb), Perez and 
Behdinan [32] - 173.23kg (381.91lb), and Farshi 
and Alinia-Ziazi [23] - 172.21kg (379.65lb), among 
others. In all simulations each optimum solution was 
obtained after 20,000 searches. 
 
 

4 Conclusions 
This paper presented an analysis of two of the last 
proposed metaheuristic algorithms applied to 
engineering problems of optimization of truss 
structures. The two metaheuristic algorithms, HS 
and FA, were applied to optimization of a number of 
truss structure design problems and the optimized 
trusses are compared with that reported in the 
literature. The comparison of the results of these 
benchmark problems clearly illustrates the 
effectiveness and applicability of both metaheuristic 
algorithms. And it is important to point out that, in 

all presented problems, as much using HS as FA, 
none of the constraints were violated. 

Many simulations were performed and the results 
showed that both methods are little sensitive to the 
chosen parameters, principally HS, which means 
that it is not necessary to fine-tune these parameters 
to get quality solutions, which is an advantage of 
both metaheuristic algorithms in relation to other 
optimization methods. 

Ten independent runs of each problem were 
carried out for each algorithm, and these statistical 
results showed, as much using HS as FA, a little 
standard deviation from the mean value of the 
independent runs, showing that both methods are 
effective and reliable. 

As much HS as FA could find the optimal 
solution in a relatively short computational time. For 
the same number of iterations HS found the optimal 
solution in a slightly shorter time than FA. 
However, for these tested examples, in most cases, 
FA found solutions slightly better than HS. 
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